检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。
下载Firefox孙勇
电话:0592-5952786
邮箱:sunyong@xmu.edu.cn
研究方向: 可再生材料、生物能源、可再生精细化学品,催化化学
2020/08-至今 环球360游戏网址,教授,博/硕士生导师
2015.08-2020.07 环球360游戏网址,副教授,硕士生导师
2014.03-2015.03 College of Environmental Science and Forestry, State University of New York访问学者
2010.07-2015.07 环球360游戏网址,助理教授
2008/07-2010.07 华南理工大学化学与化工学院,博士后
2005.09-2008.07 华南理工大学制浆造纸国家重点实验室,博士
1. 可再生精细化学品
基于可再生绿色化学理念,专注于可再生资源生物质组分纤维素、半纤维素及平台化合物戊糖、己糖转化为高附加值化学品的技术途径研究,包括平台分子糠醛、5-羟甲基糠醛、乙酰丙酸及其衍生物的呋喃醇(糠醇、呋喃二甲醇)、醛(呋喃二甲醛…)、酮(2, 5(H)-呋喃酮、环戊酮类、己二酮…)、酸(糠酸酸、呋喃二甲酸…)和胺类(糠胺、呋喃二甲胺…)衍生物,碳链醇/醛/酮/酸/酯/胺类精细化学品(丁烯、丁酮、丁烯二酸(酐)、γ-氨基乙酰丙酸、吡咯烷酮、γ-戊内酯,乙酰丙酸酯、己二胺…)。
2. 生物质资源环境友好清洁分离与可再生材料制备技术
针对传统工业上高碱、高硫,生物质分离方法,专注于开发生物质剩余物,如木材、竹材、秸秆等的清洁分离技术,集中于新型弱碱盐缓冲体系下氧脱木质技术,展开基于木质生物质分级利用的组分优先分离策略及相关分离机制研究。并针对纤维素和半纤维素,开发衍生化技术制备生物可降解复合材料。
3. 纳米催化材料制备及其在绿色合成中的应用技术
基于光催化、热催化等催化原理,研发了多种纳米颗粒制备技术,实现催化材料的粒度、形貌、结构调控,优化催化性能,用于环境污染控制、能源化学品、精细化学品催化转化和生物质废弃物催化转化。
4. 无机/有机量子点材料的构建与应用
基于钙钛矿、碳等纳米量子点的合成技术研究,开发量子点光/电功能材料制备与应用技术。
1.“农业废弃物清洁水解制备柴油代用燃料联产化学品关键技术”,河南省科技进步一等奖,2016.12
2.2016年“创青春”第九届“挑战杯”福建省大学生创业计划竞赛,参赛作品“厦门广源科技有限公司”,共青团福建省委/福建省教育厅/福建省人力资源和社会保障厅,银奖,指导教师,2016.9
1.果糖经5-羟甲基糠醛制备呋喃二甲酸技术开发,中国石油天然气股份有限公司大庆化工研究中心,20万,2020.01-2021.06,项目负责人
2.纤维素组分清洁分离及相变凝胶制备研究,生物基材料与绿色造纸国家重点实验室开放基金KF201926,6.0万,2020.01-2021.12,项目负责人;
3.5-羟甲基糠醛一锅体系中催化制备生物质基邻苯二甲酸酐的反应途径与机制研究,国家自然科学基金(面上)21978246,75万,2020.01-2023.12,项目负责人;
4.福建省高等学校新世纪优秀人才支持计划,福建省教育厅,2018.08,项目负责人;
5.生物质乙酰丙酸制备C4化学品丁酮的反应途径研究,中国石油天然气集团有限公司创新基金 2018D-5007-0503,20万,2018.03 -2020.03,项目负责人;
6.碳水化合物催化合成5-氨甲基-2-羟甲基呋喃的反应途径与机制研究,国家自然科学基金(面上)21776234,75万,2018.01-2021.12,项目负责人;
7.2018-2021福建省科技特派员专项经费,福建省科技厅,8.0万,2018.01-2022.12,项目负责人;
8.生物质清洁分级解离及组分高值化利用技术研究,环球360游戏网址发展基金2017NYFZ02,60万,2017.06-2020.06,项目负责人;
9.国内外钻井废水处理的相关标准及现状调研及咨询,中国石油川庆钻探公司安全环保质量监督检测研究院,2.88万,2016.05-2016.12,项目负责人;
10.生物质经乙酰丙酸酯转移加氢低成本制备γ-戊内酯的技术途径研究,福建省自然科学基金2016J01077,4万,2016.04-2019.04,项目负责人;
11.太阳能电池光谱修饰纤维素复合膜的制备途径与机理研究,厦门大学校长基金20720160087,35万,2016.01-2018.12,项目负责人;
12.生物质经乙酰丙酸酯转移氢化合成γ-戊内酯,江苏省生物质能源与材料重点实验室开放基金JSBEM201403,5万,2014.01-2016.12,项目负责人;
13.生物质糖经乙酰丙酸脱羧合成仲丁醇的途径与机制研究,东南大学能源热转换及其过程测控教育部重点实验室开放基金,2万,2013.01-2014.12,项目负责人;
14.生物质基葡萄糖4位脱水同步生成羟基乙醛和1, 3-二羟丙酮的机理及调控研究,国家自然科学基金21106121,25万,2012.01-2014.12,项目负责人;
15.木质生物质糖直接催化转化为甲基呋喃类液体燃料机理及调控,厦门大学中央高校基本科研业务费2010121077,30万,2010.09-2013.09,项目负责人;
16.工业碱木质素功能性基团的白腐菌修饰研究,博士后基金,20090450863,3万,项目负责人;
1.XinYu, Tingke Jin, Huiqiang Wang, Guoqing Zhang, Wenlong Jia, Lincai Peng, Yong Sun, Xing Tang, Xianhai Zeng, Shuliang Yang, Zheng Li, Feng Xu, Lu Lin. Heterogeneously-catalyzed aerobic oxidation of furfural to furancarboxylic acid with CuO-Promoted MnO2. Green Energy & Environment, 2022 (https://doi.org/10.1016/j.gee.2022.03.016)
2.Xiaoyu Zhao, Wenlong Jia, Huiqiang Wang, Guihua Yan, Yong Sun*, Xing Tang, Xianhai Zeng, Lu Lin. Preparation of CH3NH3PbBr3 perovskite quantum dots composites with high photoluminescence quantum yield and good stability. Journal of Luminescence, 2022, 245, 118749. (https://doi.org/10.1016/j.jlumin.2022.118749)
3.Wenlong Jia, Jie Zhang, Xin Yu, Yunchao Feng, Qian Wang, Yong Sun*, Xing Tang, Xianhai Zeng, Lu Lin. Insight into the Mars-van Krevelen mechanism for production 2,5-diformylfuran over FeNx@C catalyst. Biomass and Bioenergy, 2022, 156, 106320. (https://doi.org/10.1016/j.biombioe.2021.106320)
4.Wenlong Jia, Huai Liu, Yunchao Feng, Jie Zhang, Xiaoyu Zhao, Yong Sun, ZuojunWei, Shuliang Yang, Xing Tang, Xianhai Zeng, Lu Lin. Efficient supercritical carbon dioxide promoted reductive amination of furfural using water as hydrogen donor over Ni/CaCO3. Journal of Cleaner Production 2022, 345, 131029. (https://doi.org/10.1016/j.jclepro.2022.131029)
5.Xin Yu, Zuo Miao, Huiqiang Wang, Wenlong Jia, Qian Wang, Yong Sun, Xing Tang, Xianhai Zeng, Shuliang Yang, Zheng Li, Zuo-Jun Wei, Feng Xu, Lu Lin. Insight into the catalytic mechanism of core–shell structured Ni/Ni-N/CN catalyst towards the oxidation of furfural to furancarboxylic acid. Fuel, 2022, 317, 123579. (https://doi.org/10.1016/j.fuel.2022.123579)
6.Wenlong Jia, Jie Zhang, Miao Zuo, Xin Yu, Huai Liu, Zheng Li, Yong Sun*, Shuliang Yang, Xing Tang, Xianhai Zeng, Lu Lin. Boosting the Acid Sites and Lattice Oxygen Activity of the Fe–Cu Catalyst for One-Pot Producing 2,5-Diformylfuran from Fructose. ACS Sustainable Chem. Eng. 2022, 10(1), 421–430. (https://doi.org/10.1021/acssuschemeng.1c06644)
7.Qian Wang, Jie Zhang, Wenlong Jia, XinYu, JiahongChen, YongSun, Zuojun Wei, Shuliang Yang, Xing Tang, Xianhai Zeng, Lu Lin. Aerobic oxidation of 5-[(formyloxy)methyl]furfural to 2,5-furandicarboxylic acid over MoCuOx catalyst. Molecular Catalysis, 2022, 517, 111986 (https://doi.org/10.1016/j.mcat.2021.111986)
8.Xin Yu, Huai Liu, Qian Wang, Wenlong Jia, Huiqiang Wang, Weile Li, Jiawen Zheng, Yong Sun*, Xing Tang, Xianhai Zeng, Feng Xu*, and Lu Lin, Selective Oxidation of Furfural to 2(5H)-Furanone and Maleic Acid over CuMoO4, ACS Sustainable Chemistry & Engineering, 2021, 39(9), 13176-13187. (https://doi.org/10.1021/acssuschemeng.1c03420)
9.Wenlong Jia,Huai Liu,Xiaoyu Zhao,Yunchao Feng,Miao Zuo,Yong Sun*,Xing Tang,Shuliang Yang,Xianhai Zeng,Lu Lin. Boosting the lattice oxygen activity of Fe-catalyst for producing 2,5-diformylfuran from 5-hydroxymethylfurfural. Fuel, 2022, 308, 122069. (https://doi.org/10.1016/j.fuel.2021.122069)
10.Zhao Xiaoyu, Jia Wenlong, Wang Huiqiang, Yan Guihua, Sun Yong*, Tang Xing, Zeng Xianhai, Lin Lu. One-step preparation of excellent flexible ethyl cellulose composite film for LED. Materials Chemistry and Physics, 2021, 270, 124798. (https://doi.org/10.1016/j.matchemphys.2021.124798)
11.Zhao Xiaoyu, Jia Wenlong, Wang Huiqiang, Sun Yong*, Tang Xing, Zeng Xianhai, Lin Lu. Low-temperature synthesis of zirconium silicate stabilized perovskite quantum dot composite material. Advanced Powder Technology, 2021, 32(8), 2798-2805. (https://doi.org/10.1016/j.apt.2021.05.051)
12.Jie Zhang, Wenlong Jia, Yong Sun*, Shuliang Yang, Xing Tang, Xianhai Zeng, Lu Lin. An efficient approach to synthesizing 2,5-bis(N-methyl-aminomethyl)furan from 5-hydroxymethylfurfural via 2,5-bis(N-methyl-iminomethyl)furan using a two-step reaction in one pot. Green Chemistry, 2021, 23, 5656-5664. (https://doi.org/10.1039/d1gc01635k)
13.Zuojun Wei, Qing Li, Yuran Cheng, Mei Dong, Zuyi Zhang, Xinmiao Zhu, Yingxin Liu*, Yong Sun*. Low Loading of CoRe/TiO2 for Efficient Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone. ACS Sustainable Chemistry & Engineering, 2021 9 (32), 10882-10891 (https://doi.org/10.1021/acssuschemeng.1c03380)
14.Zuojun Wei, Yuran Cheng, Kuo Zhou, Yue Zeng, En Yao, Qing Li, Yingxin Liu, Yong Sun*. One-Step Reductive Amination of 5-Hydroxymethylfurfural into 2,5-Bis(aminomethyl)furan over Raney Ni. ChemSusChem, 2021, 14(11), 2308-2312. (https://doi.org/10.1002/cssc.202100564)
15.Wenlong Jia, Weile Li, Xiaoyu Zhao, Yunchao Feng, Miao Zuo, Yong Sun*, Xing Tang, Xianhai Zeng, Lu Lin. Insights into the catalytic mechanism of 5-hydroxymethfurfural to phthalic anhydride with MoO3/Cu(NO3)2 in one-pot. Catalysis Science & Technology, 2021, 11(16), 5656-5662 (https://doi.org/10.1039/d1cy00940k)
16.Tao Wang, Juan Du, Yong Sun, Xing Tang, Zuo-Jun Wei, Xianhai Zeng, Shi-Jie Liu, Lu Lin. Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst. Chinese Chemical Letters, Available online 29 July 2020. (https://doi.org/10.1016/j.cclet.2020.07.044 )
17.Wenlong Jia, Zhihao Si, Yunchao Feng, Xin Zhang, Xiaoyu Zhao, Yong Sun,* Xing Tang, Xianhai Zeng, Lu Lin. Oxidation of 5-[(formyloxy)methyl]-furfural to maleic anhydride with atmospheric oxygen using α-MnO2/Cu(NO3)2 as catalysts. ACS Sustainable Chem. Eng. 2020, 8(21), 7901-7908. (https://doi.org/10.1021/acssuschemeng.0c01144)
18.Wenlong Jia, Yong Sun*, Miao Zuo, Yunchao Feng, Xing Tang, Xianhai Zeng, Lu Lin. One pot Synthesis of Renewable Phthalic Anhydride from 5‐Hydroxymethfurfural using MoO3/Cu(NO3)2 as Catalyst. ChemSusChem. 2020, 13(3), 640-646. (https://doi.org/10.1002/cssc.201902590)
19.Wenlong Jia, Juan Du, Huai Liu, Yunchao Feng, Yong Sun*, Xing Tang, Xianhai Zeng, Lu Lin. An efficient approach to produce 2,5‐diformylfuran from 5‐hydroxymethylfurfural using air as oxidant. Journal of Chemical Technology and Biotechnology. 2019, 94(12), 3832-3838. (https://doi.org/10.1002/jctb.6179)
20.Yong Sun*, Caixia Xiong, Quanchang Liu, Jiaren Zhang, Xing Tang, Xianhai Zeng, Shijie Li, Lu Li. Catalytic transfer hydrogenolysis/hydrogenation of biomass-derived 5-formyloxymethylfurfural to 2, 5-dimethylfuran over Ni-Cu bimetallic catalyst with formic acid as a hydrogen donor. Industrial & Engineering Chemistry Research. 2019, 58(14), 5414-5422. (https://doi.org/10.1021/acs.iecr.8b05960)
21.Juan Du, Jiaren Zhang, Yong Sun*, Wenlong Jia, Zhihao Si, He Gao, Xing Tang, Xianhai Zeng, Tingzhou Lei, Shijie Liu, Lu Lin. Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis. 2018, 368, 69-78. (https://doi.org/10.1016/j.jcat.2018.09.025)
22.Wei Chen, Yong Sun*, Juan Du, Zhihao Si, Xing Tang, Xianhai Zeng, Lu Lin*, Shijie Liu, and Tingzhou Lei. Preparation of 5-(Aminomethyl)-2-furanmethanol by Direct Reductive Amination of 5-Hydroxymethylfurfural with Aqueous Ammonia over Ni/SBA-15 Catalyst. Journal of Chemical Technology and Biotechnology. 2018, 93(10), 3028-3034. (https://doi.org/10.1002/jctb.5661)
23.Yetao Jiang, Ning Ding, Bin Luo, Zheng Li, Xing Tang, Xianhai Zeng, Yong Sun*. Shijie Liu, Tingzhou Lei, Lu Lin. Chemical structure change of Magnesium Oxide in the wet oxidation delignification process of biomass with solid alkali. ChemCatChem 2017, 9(13), 2544-2549. (https://doi.org/10.1002/cctc.201700155)
24.Hao Weiwei, Li Weifeng, Tang Xing, Zeng Xianhai, Sun Yong*, Liu Shijie, Lin Lu*. Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2, 5-bishydroxymethyl furan. Green Chem.. 2016,18, 1080-1088. (https://doi.org/10.1039/C5GC01221J)
25.Yetao Jiang, Wei Chen, Zheng Li, Xing Tang, Xianhai Zeng, Yong Sun*, Lu Lin*, Shijie Liu. One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl] furfural: a novel alternative platform chemical to 5-hydroxymethylfurfural. Industrial Crops and Products, 2016, 83(3), 408-413. (https://doi.org/10.1016/j.indcrop.2016.01.004)